No questions found
Find the value of x and the value of y.
$$ x = \text{.....................} $$
$$ y = \text{.....................} $$
A regular polygon has 40 sides.
Find the size of one exterior angle.
A is the point (1, 5) and B is the point (6, 2).
Find the column vector $\overrightarrow{AB}$.
Given $t = 3p^2$
(a) Find the value of $t$ when $p = 4$.
$t = \text{.........................................}$ [1]
(b) Re-arrange the formula to write $p$ in terms of $t$.
$p = \text{.........................................}$ [2]
The cumulative frequency curve shows some information about the heights of 800 plants.
Find
(a) the median, ............................................ cm [1]
(b) the upper quartile. ............................................ cm [1]
Work out $\frac{4}{5} \div 1\frac{1}{2}$.
A car travels 85 km in 50 minutes.
Find the average speed of the car, giving your answer in km/h.
.......................................... km/h [2]
Solve the simultaneous equations.
$ a + b = 16 $
$ 2a - b = 17 $
a = ...........................................
b = ............................................ [2]
Find the equation of the line parallel to the line $y = 3 - x$ that passes through the point $(0, 7)$. .................................................. [2]
Work out the value of $\left(\frac{1}{27}\right)^{\frac{1}{3}}$.
n(U) = 25 \hspace{5mm} n(P) = 10 \hspace{5mm} n(Q) = 17 \hspace{5mm} n(P \cup Q)' = 5
Complete the Venn diagram.
Factorise completely.
$ab - a - b + 1$
Work out $1.1 \times 10^{30} + 1.1 \times 10^{29}$, giving your answer in standard form.
Find the highest common factor (HCF) of $8p^4q^8$ and $4p^3q^{10}$.
The diagram shows a cyclic quadrilateral.
Find the value of $a$ and the value of $b$.
$a = \text{.....................}$
$b = \text{...........................................}$
Rationalise the denominator.
$$\frac{1}{\sqrt{5} - 1}$$
........................................ [2]
y is inversely proportional to \sqrt{x+4}.
When x = 5, y = 12.
Find y in terms of x.
y = \text{..........................} [2]
Simplify.
\( \frac{y^2 - 9}{xy + 3x} \)
(a) $2 \log x = 3 \log 4$
Find the value of $x$.
$x = \text{........................................}$ [2]
(b) $\log x + \log u - \log v = \log p$
Find $p$ in terms of $x$, $u$ and $v$.
$p = \text{........................................}$ [1]