All Questions: Cambridge IGCSE Mathematics - International - 0607 - Core Paper 1 2019 Summer Zone 1
Theory
MCQ
01.
Theory 1 Marks
CH1 - Number

Write 36247 correct to the nearest thousand.

02.
Theory 1 Marks
CH1 - Number

Write down three multiples of 12. ..................., ..................., ................... [1]

03.
Theory 2 Marks
CH5 - Geometry


The diagram shows a circle centre $O$ and three lines, $OA$, $AB$ and $CD$.
Write down the line that is
(a) a chord, ............................................................... [1]
(b) a tangent. ............................................................... [1]

04.
Theory 2 Marks
CH1 - Number

The cost, in dollars, of a taxi journey is $2 \times (\text{number of kilometres travelled}) + 10$.
Find the cost of a taxi journey of 30 kilometres.
$ \text{.....................} $ \text{[2]}

05.
Theory 1 Marks
CH1 - Number

Change 2.4 metres into millimetres. ..................... mm [1]

06.
Theory 2 Marks
CH5 - Geometry

(a) Find the value of $x$.
$x - \text{................................................} \ [1]$

(b) Find the value of $y$.
$y = \text{................................................} \ [1]$

07.
Theory 1 Marks
CH1 - Number

Write down all the integers that satisfy the inequality shown on this number line.

08.
Theory 3 Marks
CH1 - Number

(a) Work out $\frac{3}{8}$ of 16. .......................................................... [1]
(b) Write $\frac{1}{20}$ as a percentage. ..........................................................\% [1]
(c) Write $\frac{1}{8}$ as a decimal. .......................................................... [1]

09.
Theory 3 Marks
CH7 - Mensuration

Work out the area of this shape.

...................................... $\text{cm}^2$ [3]

10.
Theory 4 Marks
CH11 - Statistics

Huda is drawing a pie chart for the times, in minutes, that 60 students take to travel to school.

[Table_1]

Time \((t\text{ minutes})\) | Frequency | Angle (degrees)
\(t \leq 10\) | 5 | 30
\(10 < t \leq 15\) | 15 |
\(15 < t \leq 20\) | 10 |
\(t > 20\) | 30 |

(a) Complete the table to show the sector angles in the pie chart.
[2]
(b) Complete the pie chart to show this information.

[2]

11.
Theory 2 Marks
CH4 - Coordinate geometry

A is the point $(-3, 6)$ and B is the point $(3, -2)$.
Find the co-ordinates of the midpoint of $AB$.
$\left( \text{.....................} , \text{.....................} \right)$

12.
Theory 1 Marks
CH2 - Algebra

Solve $2x < 8$.

13.
Theory 1 Marks
CH1 - Number

$2^7 = 128$
Find the value of $2^8$.
\text{...........................} [1]

14.
Theory 2 Marks
CH11 - Statistics

Write down the type of correlation shown in each of these scatter diagrams.

................................................. .................................................

15.
Theory 2 Marks
CH2 - Algebra

f(x) = x^2 + 1
Work out the values of x when f(x) = 26.
x = ....................... or x = ...................................... [2]

16.
Theory 2 Marks
CH8 - Trigonometry

The bearing of $B$ from $A$ is $300^{\circ}$.
Find the bearing of $A$ from $B$.

17.
Theory 3 Marks
CH4 - Coordinate geometry

(a) Write down the equation of line $A$.
............................................................... [1]

(b) Find the equation of line $B$.
............................................................... [2]


18.
Theory 2 Marks
CH2 - Algebra

Solve the simultaneous equations.
$$ \begin{align*} x + y &= 3 \\ x - 4y &= 13 \end{align*} $$
$x = \text{.....................}$
$y = \text{.....................}$

19.
Theory 2 Marks
CH9 - Sets

(a) On the Venn diagram shade the region represented by $A'$.

(b) The Venn diagram shows two sets $X$ and $Y$.
$U = \{ a, b, e, g, s, t, y \}$
A letter is chosen at random.
Write down the probability that it is in set $Y$ but not in set $X$.


20.
Theory 2 Marks
CH6 - Vectors and transformations

A is the point $(-3, 4)$ and B is the point $(2, 2)$.
Find the vector $\overrightarrow{AB}$.

21.
Theory 1 Marks
CH3 - Functions

The graph of $y = f(x)$ is translated by the vector $\begin{pmatrix} -2 \\ 0 \end{pmatrix}$.
Write down the equation of the new graph.
$y =$ ext{.....................}